sorption factor for a cylindrical sample with $\mu R=$ 3.0 .

The structure found for $\mathrm{KAmO}_{2} \mathrm{~F}_{2}$ is of the $\mathrm{CaUO}_{2} \mathrm{O}_{2}$ type. ${ }^{11}$ The interatomic distances are

$$
\begin{aligned}
& \mathrm{Am}-2 \mathrm{O}=(1.93 \AA .) \\
& \mathrm{Am}-6 \mathrm{~F}=2.47 \AA . \\
& \mathrm{K}-6 \mathrm{O}=2.73 \AA . \\
& \mathrm{K}-2 \mathrm{~F}=(2.74 \AA .)
\end{aligned}
$$

the values in parentheses being assumed. The AmF and $\mathrm{K}-\mathrm{O}$ distances are not much affected by moderate variations in the parameter values u and v, and are therefore quite accurate. The great difference between the primary $\mathrm{Am}-\mathrm{O}$ bond length and the secondary Am-F bond length is worthy of notice. Table II gives results for primary and secondary bond lengths of XO_{2} radicals in various crystals.

In $\mathrm{KPuO}_{2} \mathrm{CO}_{3}$, the six secondary bonds all lie in a plane, and the bond length is for this reason longer than otherwise might be expected. This substance
(11) W. H. Zachariasen, Acta Cryst., 1, 281 (1948).

Compound	Table II		
		Bond	A.
	Radical	Primary	ecorser
$\mathrm{UO}_{2} \mathrm{~F}_{2}{ }^{12}$	$\left[\mathrm{UO}_{2}\right]^{+2}$	$\mathrm{U}-2 \mathrm{O}=$ (1.91)	$\mathrm{U}-6 \mathrm{~F}=2.50$
KAmOsF2	[$\mathrm{AmO}_{2}{ }^{\text {] }}$ +	Am - $20=$ (1.93)	$\mathrm{Am}-6 \mathrm{~F}=2.47$
$\mathrm{MgUO}_{3} \mathrm{O}_{2}{ }^{18}$		$\mathrm{U}-2 \mathrm{O}=1.93 \pm 0.03$	$\mathrm{U}-4 \mathrm{O}=2.18$
$\mathrm{CaUO} \mathrm{O}_{2}$	$\left[\mathrm{UO}_{3}\right]^{2}+$	$\mathrm{U}-2 \mathrm{O}=1.91 \pm 0.10$	$\mathrm{U}-6 \mathrm{O}=2.29$
$\mathrm{KPuO}_{2} \mathrm{CO}_{3}{ }^{4}$	$\left[\mathrm{PuO}_{2}\right]^{+1}$	$\mathrm{Pu}-2 \mathrm{O}=(1.94)$	$\mathrm{Pu}-6 \mathrm{O}=2.55$

apart, the experimental results indicate that the secondary X-F bonds are appreciably longer than the secondary $\mathrm{X}-\mathrm{O}$ bonds, and this in turn suggests that the primary bond lengths in $\mathrm{UO}_{2} \mathrm{~F}_{2}$ and KAm$\mathrm{O}_{2} \mathrm{~F}_{2}$ may be somewhat smaller than assumed.

The $\mathrm{KAmO}_{2} \mathrm{~F}_{2}$ structure is built up of hexagonal layers $\left[\mathrm{AmO}_{2} \mathrm{~F}_{2}\right]$ - held together by the potassium ions. These layers are isostructural with the $\mathrm{UO}_{z^{-}}$ F_{2} layers in uranyl fluoride and with the $\left[\mathrm{UO}_{2} \mathrm{O}_{2}\right]^{-2}$ layers in $\mathrm{CaUO}_{2} \mathrm{O}_{2}$. The period is $4.22 \AA$. for the [$\mathrm{AmO}_{2} \mathrm{~F}_{2}$]- layer and $4.20 \AA$. for the $\mathrm{UO}_{2} \mathrm{~F}_{2}$ layer as against $3.87 \AA$. for the $\left[\mathrm{UO}_{2} \mathrm{O}_{2}\right]^{-2}$ layer.
(12) W. H. Zachariasen, ibid., 1, 277 (1948).
(13) W. H. Zachariasen, unpublished result.

Los Alamos, New Mexico
Chicago, Illinors
[Contribution from the Department of Chemistry and Radiation Laboratory, University of California, Berkeley]

Lattice Parameters of Some Rare Earth Compounds and a Set of Crystal Radii

By D. H. Templeton and Carol H. Dauben
Received June 24, 1954

Unit cell dimensions are given for the compounds $\mathrm{CeCl}_{3}, \mathrm{PrCl}_{3}, \mathrm{SmCl}_{3}, \mathrm{EuCl}_{5}$ and GdCl_{3} (hexagonal UCl_{8} type), $\mathrm{Sm}_{2} \mathrm{O}_{3}$, $\mathrm{Eu}_{2} \mathrm{O}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}, \mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{Tm}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}$ and $\mathrm{Lu}_{2} \mathrm{O}_{3}$ (cubic $\mathrm{Mn}_{2} \mathrm{O}_{3}$ type), TbF_{4} (monoclinic UF_{4} type), and TbOF (rhombohedral LaOF type). A set of empirical crystal radii for the trivalent rare earth ions is proposed.

In the course of our studies of the crystal chemistry of rare earth compounds we have determined the lattice dimensions of several compounds of known structure type. In certain cases no lattice dimensions have been reported previously, and in others the new values are believed to be more reliable because of better purity of the rare earth compounds. These results are derived from powder diffraction patterns obtained with $\mathrm{Cu} \mathrm{K}_{\alpha}(\lambda$ $1.5418 \AA$.) or $\mathrm{Cr} \mathrm{K} \alpha(\lambda 2.2909 \AA$.) radiation in cameras of 9 cm . diameter.
Hexagonal Trichlorides.-The trichlorides of the elements lanthanum through gadolinium were shown to be isostructural by Bommer and Hohmann. ${ }^{1}$ Zachariasen ${ }^{2}$ showed that they are hexagonal and worked out the atomic positions for the isostructural uranium trichloride. No lattice dimensions seem to have been reported for SmCl_{3}, EuCl_{3} or GdCl_{3}. Our results ($\mathrm{Cr} \mathrm{K} \alpha$ radiation) are listed in Table I, where the prior values of Zachariasen^{2} are given in parentheses for comparison. For CeCl_{3} and PrCl_{3}, which were studied in both researches, the agreement is good.

Our sample of SmCl_{3} was prepared by Dr. H. R. Lohr, and the others by Dr. C. W. Koch by the reaction of the respective oxides with hydrogen chloride gas at 800 to $900^{\circ} \mathrm{K}$.

[^0]Table I
Lattice Parameters of Hexagonal Trichlorides

	c, \AA.	c, \AA.	$V, \AA . z$	
LaCl_{3}	$(7.483 \pm 0.003)^{a}$	$(4.375 \pm 0.003)^{a}$	212.2	
CeCl_{3}	$7.450 \pm .004$	$4.315 \pm .002$	207.4	
	$(7.451 \pm .004)^{a}$	$(4.313 \pm .004)^{a}$		
PrCl_{3}	$7.422 \pm .005$	$4.275 \pm$.004	203.9
	$(7.42 \pm .01)^{a}$	$(4.26 \pm$	$.01)^{a}$	
NaCl_{3}	$(7.396 \pm .004)^{a}$	$(4.239 \pm$	$.003)^{a}$	200.8
SmCl_{3}	$7.378 \pm .007$	$4.171 \pm$.004	196.6
EuCl_{3}	$7.369 \pm .004$	$4.133 \pm$.002	194.4
GdCl_{3}	$7.363 \pm .004$	$4.105 \pm$.002	192.7

Cubic Sesquioxides.-Most of the sesquioxides of the rare earth elements as commonly prepared have the cubic $\mathrm{Mn}_{2} \mathrm{O}_{3}$ type structure ${ }^{3}$. The atomic positions are given for the mineral bixbyite, $(\mathrm{Fe}, \mathrm{Mn})_{2} \mathrm{O}_{3}$, by Pauling and Shappell. ${ }^{4}$ We have calculated cell dimensions ($\mathrm{Cu} \mathrm{K} \alpha$ radiation) for samples whose purity is greater than $99.9 \% \mathrm{ac}-$ cording to spectrographic analysis for metallic impurities. These samples, purified by ion-exchange methods, were originally obtained from the Institute for Atomic Research, Iowa State College. The results are compared in Table II with some of the prior values found in the literature. In several
(3) Strukturbericht, Vol. II, p. 38.
(4) L. Pauling and M. D. Shappell, Z. Krist., 75, 128 (1930).
cases the differences are significant. The new values, when plotted as a function of atomic number, fall somewhat better on a curve which is smooth except for a cusp at gadolinium.

For the atomic parameters given by Pauling and Shappell, ${ }^{4}$ which we have found also to be suitable for $\mathrm{Am}_{2} \mathrm{O}_{3},{ }^{5}$ each metal atom has six oxygen neighbors at an average distance of $0.21441 a$, where a is the cell dimension.

Terbium Tetrafluoride.-Dr. D. C. Feay ${ }^{6}$ prepared TbF_{4} by the reaction of TbF_{3} with fluorine gas at 320°. The powder patterns, while not excellent, were identified as those of TbF_{4} by the similarity with those of CeF_{4} and UF_{4}. ${ }^{7,8}$ The pattern was indexed (Table III) according to a monoclinic unit cell with the dimensions

$$
\begin{aligned}
& a=12.11 \pm 0.06 \AA . \\
& b=10.15 \pm 0.05 \\
& c=7.92 \pm 0.04 \\
& \beta=126.1 \pm 0.5^{\circ}
\end{aligned}
$$

Table II
Lattice Dimensions of Cubic Rare Earth Oxides

Compound	Cell dimensions, \AA.		
$\mathrm{Sm}_{2} \mathrm{O}_{3}$	10.932 ± 0.009	$10.922^{\text {a }}$	$10.915^{\text {b }}$
$\mathrm{Eu}_{2} \mathrm{O}_{3}$	$10.866 \pm .005$	10, $862^{\text {a }}$	$10.864^{\text {b }}$
$\mathrm{CrCl}_{2} \mathrm{O}_{4}$	$10.813 \pm .005$	$10.820^{\text {a }}$	$10.819^{\text {b }}$
$\mathrm{Dy}_{2} \mathrm{O}_{3}$	$10.667 \pm .006$	$10.650^{\text {b }}$	
$\mathrm{Ho}_{2} \mathrm{O}_{3}$	$10.607 \pm .005$	$10.60^{\text {c }}$	
$\mathrm{Er}_{2} \mathrm{O}_{3}$	$10.547 \pm .003$	$10.526^{\text {b }}$	
$\mathrm{Tm}_{2} \mathrm{O}_{3}$	$10.488 \pm .006$	$10.476^{\text {b }}$	
$\mathrm{Yb}_{2} \mathrm{O}_{3}$	$10.439 \pm .007$	$10.429^{\text {b }}$	
$\mathrm{Lu}_{2} \mathrm{O}_{3}$	$10.391 \pm .005$	$10.396{ }^{\text {b }}$	

${ }^{a}$ A. Iandelli, Gazz. chim. ital., 77, 312 (1947). ${ }^{6} \mathrm{H}$. Bornmer, Z. anorg. allgem. Chem., 241, 273 (1939). ${ }^{\circ} \mathrm{W}$. H. Zachariasen, Norske Vid. Akad. Oslo, I, Mat. Nat. K1. 4,1 (1928). ' The values cited from a, b and c have been changed from kX . units.

The compounds $\mathrm{ZrF}_{4}, \mathrm{HfF}_{4}{ }^{9}{ }^{9} \mathrm{ThF}_{4}, \mathrm{NpF}_{4}, \mathrm{PuF}_{4}{ }^{7}$ and $\mathrm{AmF}_{4}{ }^{10}$ also have this structure. Zachariasen ${ }^{7}$ determined approximate metal atom positions for UF_{4}. Burbank, ${ }^{8}$ with single crystal data for UF_{4}, refined the structure given by Zachariasen and obtained also the fluorine positions. The space group is $\mathrm{C}_{2 \mathrm{~h}}^{6}-\mathrm{C} 2 / \mathrm{c}$ with twelve molecules in the unit cell. For TbF_{4} the cell volume is $786 \AA .^{3}$ and the density calculated from the X-ray data is 5.95 g . $\mathrm{cm} .^{-3}$.
Terbium Oxyfluoride.-Feay ${ }^{6}$ also prepared TbOF by pyrohydrolysis of TbF_{4} at 400° in a muffle furnace for about ten hours. The pattern ($\mathrm{Cu} \mathrm{K} \alpha$) was pseudo-cubic with considerable broadening of some of the lines. With chromium $\mathrm{K} \alpha$ radiation the doubling of several of these lines was resolved. Comparison of the intensities and line structure with the data of Zachariasen ${ }^{11}$ for the tetragonal and rhombohedral forms of YOF and LaOF showed
(5) D. H. Templeton and C. H. Dauben, This Journal, 75, 4560 (1953).
(6) B. B. Cunningham, D. C. Feay and M. A. Rollier, ibid., 76, 3361 (1954).
(7) W. H. Zachariasen, Acta Cryst., 2, 388 (1949).
(8) R. D. Burbank, Atomic Energy Commission Declassified Document, AECD-3216, August, 1951.
(9) G. E. R. Schulze, Z. Krist., 89, 477 (1934).
(10) L. B. Asprey, This Journal, 76, 2019 (1954)
(11) W_{i} H. Zachariasen, Acta Cryst., 4, 231 (1981).

Table III
Powder Diffraction Data for TbF_{4} ($\mathrm{Cr} \mathrm{K} \alpha, \lambda=2.2909 \AA$.)

$h k l$	Calcd.	Obsd.	$\begin{gathered} I_{1} \\ \text { obsd. } \end{gathered}$
110	0.0264	0.0260	w
$11 \overline{1}$. 0338	. 0331	w
021	. 0831		
111	. 0832	. 0826	s
$20 \overline{2}$. 0841		
$31 \overline{1}$. 0941	. 0936	m
$11 \overline{2}$	$.1051\}$		
220	. 1059 \}	. 1052	vs
$31 \overline{2}$. 1160	. 1160	m
002	$.1282\}$. 1287	
130	. 1284 \{	. 1287	w
$22 \overline{2}$. 1352		
$13 \overline{1}$. 1358 \}	.1347	m
310	. 1362		
422	. 2009		
$31 \overline{3}$. 2021		
$42 \overline{1}$. 2037 \}	. 2015	w
040	. 2038		
112	. 2041		
330	. 2382	. 2382	vw
$33 \overline{3}$. 3041	. 3034	vw
$60 \overline{2}$. 3253	. 3257	w
042	. 3320)		
150	. 3322 \}	3335	w
222	. 3330		
$53 \overline{2}$. 3386		
023	. 3395	3404	n1
$15 \overline{1}$. 3396	. 3404	n1
241	. 3403)		

clearly that the TbOF was rhombohedral. The diffraction data (Table IV) correspond to a rhombohedral cell with

$$
\begin{aligned}
& a=6.751 \pm 0.005 \AA . \\
& \alpha=33.09 \pm 0.03^{\circ}
\end{aligned}
$$

Zachariasen ${ }^{11}$ found the space group $D_{3 d}^{5}-R \overline{3} m$ with two molecules in the unit cell and reported atomic positions for LaOF which were satisfactory for YOF also. The parameters cannot be very different for TbOF as the intensities agree well with those observed by Zachariasen for LaOF. With these parameters, each terbium atom has four oxygen neighbors at $2.45 \AA$. and four fluorine neighbors at $2.30 \AA$. The structure is a superlattice based on a slightly distorted CaF_{2} type structure. For the undistorted structure a is $33.56^{\circ} .^{12}$ For TbOF the unit cell volume is $244.8 \AA .^{3}$ and the X-ray density $7.89 \mathrm{~g} . \mathrm{cm}^{-3}$.
Empirical Crystal Radii.-One of the chief uses of crystal radii is the correlation of various thermodynamic properties. In the rare earth series this is not satisfactory if the radii are expressed to two decimal places as is customary, since the differences between adjacent elements are of the same order of magnitude as the possible rounding-off errors. ${ }^{13}$ For this reason, we list in Table V a set of empirical crystal radii for the trivalent rare earth ions, given
(12) The value 33.22° given in reference 11 is incorrect.
(13) A recent example of such difficulties is given by Wheelwright, Spedding and Schwarzenbach, This Journal, 75, 4196 (1953).

Table IV				
Powder Diffraction Data for Tbof ($\mathrm{Cr} \mathrm{K} \alpha, \lambda=2.2909 \AA$.)				
hela hex.	$\begin{gathered} h k l, \\ \text { rhomb. } \end{gathered}$	Calcd.	Obsd.	I, obsd.
006	222	0.1291	0.1284	W
102	110	. 1327	. 1325	ms
104	211	. 1758	. 1759	m
009	333	. 2905	2919	
107	322	. 2941	2919	vw
108	332	. 3480	. 3482	m
110	$10 \overline{1}$. 3551	. 3550	$\mathrm{m}+$
201	$11 \overline{1}$. 4771		
1,0,10	433	. 4771	. 4768	W
116	321	. 4842	$4857^{\text {b }}$	m
202	200	. 4878	. 4857	In
204	220	. 5309	. 5310	W
1, 0, 11	443	. 5524	. 5519	VW
119	432	. 6456	6478	
207	331	. 6493	. 6478	w
208	422	. 7031	. 7037	mw
1, 0, 13	544	. 7246	. 7232	vw
0, 0, 15	555	. 8071	. 8095	trace
1,0,14	554	. 8215	. 8215	W
2, 0, 10	442	. 8322	. 8316	W
211	$20 \overline{1}$. 8323	. 8316	W
212	$21 \overline{1}$. 8430	. 8430	m+
1, 1, 12	543	. 8716	. 8713	w
214	310	. 8861	. 8857	m
${ }^{a}$ For an hexagonal cell with $a=3.844, c=19.13, Z=6$. ${ }^{6}$ Diffuse.				

to three decimal places. It should be remembered that the second decimal is in doubt on an absolute scale, but the third decimal is of significance in the differences of adjacent radii. For most correlative purposes, the absolute scale is of no consequence.

These radii are based primarily on the cubic oxides, with the radius of oxygen taken as $1.380 \AA$.
in this structure (coördination six). The cell dimensions of the tetragonal oxychlorides, ${ }^{14}$ the second most extensive isostructural set available, were used in an empirical way to help fix the values for the elements near lanthanum. The less extensive data on the monoclinic ${ }^{15}$ and hexagonal chlorides and orthorhombic fluorides ${ }^{16}$ were used to test the curvature of the plot of radius against atomic number. About as many deviations occurred in one direction as in the other.

Table V			
Crystal Radil of Trivalent Rare Earth Ions			
Ion	Radius, \AA.	Ion	Radius, ${ }^{\text {A }}$
La^{+++}	1.061	Tb^{+++}	0.923
Ce^{+++}	1.034	Dy ${ }^{+++}$. 908
Pr^{+++}	1.013	Ho^{+++}	. 894
$\mathrm{Nd}+{ }^{++}$	0.995	Er^{+++}	. 881
Pm ${ }^{+++}$. 979	Tm ${ }^{+++}$. 869
Sm ${ }^{+++}$. 964	Yb^{+++}	. 858
$\mathrm{Eu}{ }^{+++}$. 950	Lu^{+++}	. 848
Gd^{+++}	. 938		

We wish to thank Mrs. Helena W. Ruben who took the diffraction photographs and performed some of the calculations, and Professor B. B. Cunningham and his students who supplied us with the rare earth trichlorides and the terbium compounds. The completion of this study was aided by a John Simon Guggenheim Memorial Fellowship (to D.H.T.) and by the kind hospitality of Professor G. Hägg and the Institute of Chemistry, University of Uppsala, Uppsala, Sweden. This research was supported by the Atomic Energy Commission.
(14) D. H. Templeton and C. H. Dauben, This Journal, 75, 6069 (1953).
(15) D. H. Templeton and G. F. Carter, J. Phys. Chem., 58, Nov. (1954).
(16) A. Zalkin and D. H. Templeton, Teis Journal, 75, 2453 (1953).

Berkeley, California

[Contribution from the Department of Chemistry, State University of Iowa]

Praseodymium Oxides. II. X-Ray and Differential Thermal Analyses ${ }^{1}$

By E. Daniel Guth, ${ }^{2}$ J. R. Holden, N. C. Baenziger and LeRoy Eyring
Received May 24, 1954

Abstract

This is a study of oxides of praseodymium in the composition range $\mathrm{Pr}_{2} \mathrm{O}_{3}$ to $\mathrm{Pr}_{6} \mathrm{O}_{15}$. X-Ray powder diagrams of quenched samples were taken in order to investigate the structures of oxides of several compositions. High temperature X-ray powder diagrams were taken for a check on the quenching procedure. Differential thermal analyses were made to further illustrate the stepwise nature of oxidation and reduction in this system. The results indicate that under equilibrium conditions oxides with hexagonal, body-centered cubic, rhombohedral or face-centered cubic lattices are stable at various compositions. As $\mathrm{Pr}_{6} \mathrm{O}_{11}$ is reduced to $\mathrm{Pr}_{2} \mathrm{O}_{3}$ it undergoes changes in lattice from face-centered cubic to rhombohedral to body centered cubic to hexagonal. Each of these lattices is found to be stable over a range of compositions. The rhombohedral lattice has not previously been reported.

Introduction

Dissociation pressure measurements on praseodymium oxides ${ }^{3}$ indicate that in addition to the well-known oxides, $\mathrm{Pr}_{2} \mathrm{O}_{3}$ and $\mathrm{Pr}_{6} \mathrm{O}_{11}$, other oxides
(1) Part of the data reported here was taken from a dissertation submitted by E. Daniel Guth to the Graduate College of the State University of Iowa.
(2) Research Division, Phillips Petroleum Co., Bartlesville, OkIahoma.
(3) R. Ferguson, E. Daniel Guth and L. Eyring. This Journal, 76, 3890 (1954).
intermediate to them exhibit stability under equilibrium conditions at particular pressures up to one atmosphere of oxygen, and temperatures up to 1050°. Many previous workers have reported $\mathrm{Pr}_{2} \mathrm{O}_{3}$ and $\mathrm{Pr}_{6} \mathrm{O}_{11}$, but the nature of the region between these compositions has not been clearly understood. Through the techniques of X-ray diffraction and differential thermal analysis a study of this system has been carried out to further elucidate it.

[^0]: (1) H. Bommer and E. Hohmann, Z. anorg. allgem. Chem., 248, 373 (1941).
 (2) W. H. Zachariasen, J. Chem. Phys., 16, 254 (1948).

